

ANNUAL ENVIRONMENTAL MONITORING REPORT 26 AUGUST 2017 – 25 AUGUST 2018

PREPARED FOR OBERON COUNCIL

OCTOBER 2018

• Civil, Environmental & Structural Engineering • Surveying • Environmental • Planning • Architecture

ANNUAL ENVIRONMENTAL MONITORING REPORT

26 AUGUST 2017 TO 25 AUGUST 2018

OBERON WASTE FACILITY EPL 20289

PREPARED FOR: OBERON COUNCIL

OCTOBER 2018

POSTAL ADDRESS PO BOX 1963 LOCATION 154 PEISLEY STREET TELEPHONE 02 6393 5000 EMAIL ORANGE @ GEOLYSE.COM ORANGE NSW 2800 ORANGE NSW 2800 FACSIMILE 02 6393 5050 WEB SITE WWW.GEOLYSE.COM

Report Title:	Annual Environmental Monitoring Report
Project:	Oberon Waste Facility – 26 August 2017 to 25 August 2018
Client:	Oberon Council
Report Ref.:	217505_AEMR_17-18.docx
Status:	Final
Issued:	23 October 2018

Geolyse Pty Ltd and the authors responsible for the preparation and compilation of this report declare that we do not have, nor expect to have a beneficial interest in the study area of this project and will not benefit from any of the recommendations outlined in this report.

The preparation of this report has been in accordance with the project brief provided by the client and has relied upon the information, data and results provided or collected from the sources and under the conditions outlined in the report.

All information contained within this report is prepared for the exclusive use of Oberon Council to accompany this report for the land described herein and are not to be used for any other purpose or by any other person or entity. No reliance should be placed on the information contained in this report for any purposes apart from those stated therein.

Geolyse Pty Ltd accepts no responsibility for any loss, damage suffered or inconveniences arising from, any person or entity using the plans or information in this study for purposes other than those stated above.

TABLE OF CONTENTS

INTR	ODU	JCTION1	1
	1.1	BACKGROUND	1
	1.2 1.3	LICENCE REQUIREMENTS	1 2
		MENTAL MONITORING PROGRAM	
		OVERVIEW	
		GROUNDWATER	
ENVI	RON	MENTAL MONITORING RESULTS	6
-		INTRODUCTION	-
		3.2.1 QUALITY	6
3	3.3	GROUNDWATER	-
		3.3.1 GROUNDWATER LEVELS 8 3.3.2 GROUNDWATER QUALITY 9	9
3	3.4	LANDFILL GAS	2
отні	ER N	IONITORING DATA13	3
2	1.2	PUBLIC CONCERNS AND COMPLAINTS 13 SOLID WASTE QUANTITIES 13 EFFECTIVE COMPACTION 13	3
		۲۷1۷	
5		MONITORING	
		5.1.1 SURFACE WATER 14 5.1.2 GROUNDWATER 14	
		5.1.3 LANDFILL GAS	4
		5.1.4 COMPLAINTS	
		SOLID WASTE QUANTITIES	
-			
CON		SION AND RECOMMENDATIONS16	
-		CONCLUSION	
REFE	REN	ICES17	7
DRAV	VING	SS	

Reference 05C_EV02 – Oberon Landfill, Expansion Stages and Monitoring Points

FIGURES

Figure 1:	Surface Water pH – OWF, 2017 – 2018	. 6
Figure 2:	Surface Water EC – OWF, 2017 – 2018	. 7
Figure 3:	Surface Water TSS – OWF, 2017 – 2018	. 7
Figure 4:	Surface Water Oil & Grease – OWF, 2017 – 2018	. 8
Figure 5:	Groundwater Levels – OWF, 2017 – 2018	. 9

APPENDICES

APPENDIX A Monitoring Data

APPENDIX B Laboratory Reports

TABLES

Table 2.1 – 2017-2018 Schedule of Environmental Monitoring	3
Table 2.2 – Surface Water Monitoring Parameters and Frequency	

Introduction

1.1 BACKGROUND

The Oberon Waste Facility (OWF) is located in the Oberon Local Government Area and is owned by Oberon Council. The 11 hectare property exists approximately 4 km north of the town of Oberon and comprises Lot 1 DP 350774, Lot 1 DP 598525, Lot 1 DP 844887 and Lot 36 DP 263034. The OWF is accessed via Lowes Mount Road.

The landfill site is approximately 620 metres north-south by 430 metres east-west, with the northern extent of the site narrower than the south (refer **Drawing 05C_EV02**).

The landfill is currently screened by rows of established native trees. The established trees provide visual screening on the northern, eastern and southern boundaries of the landfill. Rows of native trees are also being established on the western side of the site.

The land adjacent to the site is predominantly rural land used for grazing and some cropping, with timber processing also conducted approximately 2.5 km to the south-east.

Landfilling operations at the site are known to have commenced prior to the 1960s, and anecdotal evidence would suggest the site may have been established in the 1940s.

The OWF services the town of Oberon, which has a population of approximately 2,500 people. The landfill receives municipal kerbside waste, municipal delivered waste, commercial and industrial waste and building and demolition waste. It also has facilities for recycling drop off and green waste separation.

1.2 LICENCE REQUIREMENTS

The OWF currently operates under Environment Protection Licence 20289 (EPL 20289), issued under Section 55 of the Protection of the Environment Operations Act 1997 (The Act). This licence governs the design, construction, operation, monitoring and rehabilitation of the facility in accordance with The Act.

Management and operation of the centre is also undertaken in accordance with the Landfill Environmental Management Plan (LEMP) (OSC, 2013).

Section 5 of EPL 20289 provides instructions on environmental monitoring requirements. Specifically, Condition M2.1 describes the requirements to monitor the concentration of pollutants discharged to groundwater, surface water and accumulated building gas.

Annual reporting requirements that are outlined in Condition R1.1 state:

R1.1 "The licensee must complete and supply to the EPA an Annual Return in the approved form comprising:

a) a Statement of Compliance; and

b) a Monitoring and Complaints Summary.

The deadline for the Annual Return that is outlined in Condition R1.5 states:

The Annual Return for the reporting period must be supplied to the EPA by registered post not later than 60 days after the end of each reporting period or in the case of a transferring licence not later than 60 days after the date the transfer was granted (the 'due date').

Condition R1.8 'Monitoring Report' states:

The licensee must supply, with the Annual Return, a report which provides:

- a) an analysis and interpretation of monitoring results from samples collected at the premises over the reporting period;
- b) actions to correct any identified adverse trends;
- c) a summary of the results of landfill gas monitoring undertaken at the premises in accordance with condition M2.2.
- d) a summary of pollution complaints resulting from activities undertaken at the premises during the reporting period.
- e) a statement regarding the attainment of the achieved compaction rate of landfilled waste (excluding cover material) in accordance with condition O6.9.
- f) a statement regarding the remaining disposal capacity (in cubic metres) of the landfill in accordance with condition M6.1.

This Annual Environmental Management Report (AEMR) is a response to Condition R1.9. The reporting period for this AEMR is from 26 August 2017 to 25 August 2018. Collection of environmental data by Geolyse began at the OWF in November 2013.

1.3 REPORT STRUCTURE

Section 1 presents a brief introduction and background to the report;

Section 2 provides an overview of the environmental monitoring program undertaken at the facility during the reporting period;

Section 3 presents the data and discussion of data collected during the reporting period;

Section 4 presents all monitoring data that falls outside of the scope of environmental monitoring for the annual return year, including records of public complaints and quantities of waste deposited;

Section 5 presents a summary of all monitoring undertaken as described in detail in Section 3 and Section 4; and

Section 6 presents the conclusions and recommendations resulting from monitoring undertaken during the reporting period.

Environmental Monitoring Program

2.1 OVERVIEW

Environmental monitoring undertaken at the OWF during the reporting period included that required for groundwater and surface water. The requirement for accumulated building gas was identified in August 2014 and subsequently commenced in September 2014. This section summarises all environmental monitoring undertaken during the reporting period (**Table 2.1**).

Date	Groundwater (Biannually)	Surface Water (Monthly During Discharge)	Accumulated Building Gas				
Sep 2017			\checkmark				
Oct 2017			\checkmark				
Nov 2017	\checkmark		\checkmark				
Dec 2017		✓	\checkmark				
Jan 2018		✓	\checkmark				
Feb 2018			\checkmark				
Mar 2018			\checkmark				
Apr 2018			\checkmark				
May 2018	\checkmark		\checkmark				
Jun 2018			\checkmark				
Jul 2018			\checkmark				
Aug 2018			\checkmark				

Table 2.1 – 2017-2018 Schedule of Environmental Monitoring

2.2 SURFACE WATER

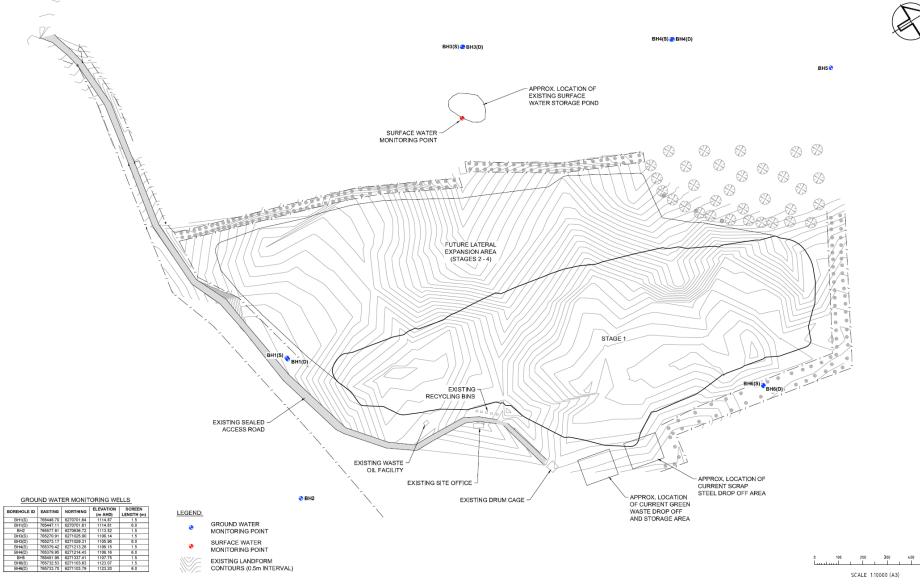

Surface water monitoring is conducted at EPL Point 1, identified as SW1. The monitoring point is illustrated in **Drawing 05C_EV02**. In accordance with EPL 20289, this point is required to be sampled monthly during discharge. A rising stage sampler is installed to assist with event sample collection.

Table 2.2 identifies the list of surface water parameters and their analysis frequency during the reporting period.

 Table 2.2 – Surface Water Monitoring Parameters and Frequency

Discharge Parameter	December 2017	January 2018
Conductivity	\checkmark	\checkmark
Oil & Grease	✓	\checkmark
рН	✓	\checkmark
Total Suspended Solids	√	√

Drawing 05C_EV02 – Oberon Landfill Monitoring Points

2.3 GROUNDWATER

The groundwater monitoring network was designed by CMJA (2012) and comprises six shallow (screened 3.5 - 5.0 m) and four deep (screened 24 - 30 m) monitoring wells. **Drawing 05C_EV02** shows the configuration of the groundwater monitoring network. The four deep monitoring wells are installed as pairs to the correspondingly numbered shallow wells.

The groundwater monitoring points are identified as BH1S, BH1D, BH2, BH3S, BH3D, BH4S, BH4D, BH5, BH6S and BH6D, corresponding to EPL Points 2 through 11.

Groundwater level measurement and sampling are undertaken on a biannual basis in accordance with EPL 20289. Monitoring commenced in November 2013. The four deep piezometers are sampled annually and the six shallow piezometers are sampled biannually.

The November 2017 biannual monitoring round was able to collect samples from three piezometers, whilst five samples were able to be collected from the May 2018 monitoring round.

Monitoring for the following analytes was able to be undertaken for sample collected throughout the reporting period:

- Alkalinity
- |
- Aluminium
- Arsenic
- Barium
- Benzene
- Cadmium
- Calcium
- Chloride
- Chromium (total)
- Cobalt
- Conductivity
- Copper
- Ethylbenzene
- Fluoride

- Iron
- Lead
- Magnesium
- Manganese
- Mercury
- Nitrogen (Ammonia)
- Nitrogen (Nitrate)
- Nitrogen (Nitrite)
- Organochlorine Pesticides
- Organophosphorus Pesticides
- pH
- Phosphorus (total)

- Polycyclic Aromatic Hydrocarbons
- Potassium
- Sodium
- Standing Water Level
- Sulfate
- Toluene
- Total Dissolved Solids
- Total Organic Carbon
- Total Petroleum Hydrocarbons
- Total Phenolics
- Xylene
- Zinc

Environmental Monitoring Results

3.1 INTRODUCTION

Monitoring results are presented in this section for all environmental monitoring undertaken during the reporting period. The laboratory data are presented, along with an interpretation of trends, variability and anomalies for groundwater and surface water. Any deficiencies in monitoring, environmental incidents and remedial actions undertaken to correct any problems or deficiencies are also discussed.

Monitoring data is summarised in the following figures and in the tables of **Appendix A**. All laboratory reports and chain-of-custody documentation are included in **Appendix B**.

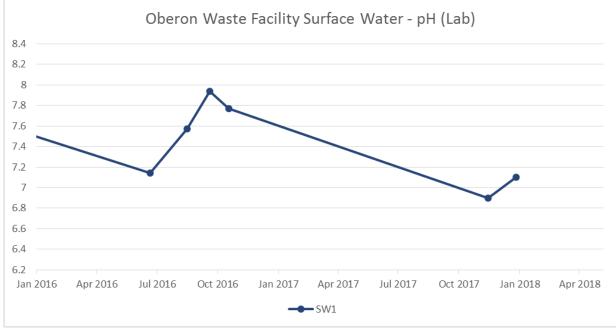
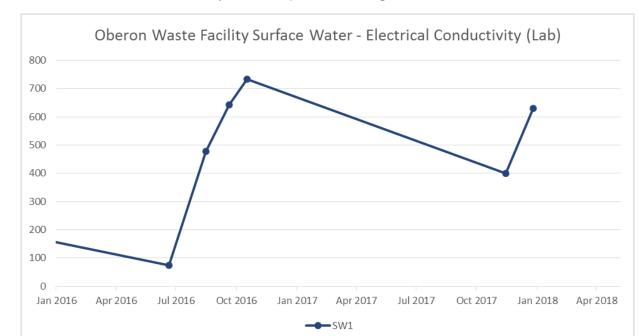
3.2 SURFACE WATER

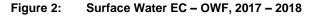
EPL 20289 requires surface water quality monitoring monthly during discharge from the surface water monitoring point SW1 (EPL point 1). The first discharge event in the reporting period was recorded in December 2017, and a subsequent discharge event was recorded in January 2018.

Samples are collected by Council contractors via rising stage samplers prior to overland flow and any off-site discharge, receiving further filtration through vegetation. All results are presented in **Appendix A**, **Table A1**.

3.2.1 QUALITY

Surface water pH concentrations are presented in Figure 1.


Figure 1: Surface Water pH – OWF, 2017 – 2018

Surface water pH was near-neutral during the measurements recorded in the reporting period, with levels ranging from 6.9 in December 2017 to 7.1 in January 2018. All values were within EPL 100 percentile discharge limit range of 6.5 - 8.5.

Surface water electrical conductivity levels are presented in Figure 2.

EC levels in the reporting period ranged from 400 μ S/cm in December 2017 to 630 μ S/cm in January 2018. Corresponding TDS concentrations ranged from 268 mg/L to 422 mg/L, and were considered suitable for consumption by the most susceptible livestock category, poultry (<3000 mg/L, ANZECC & ARMCANZ, 2000).

Surface water total suspended solid (TSS) concentrations are presented in Figure 3.

Figure 3: Surface Water TSS – OWF, 2017 – 2018

Total suspended solid results ranged from 46 mg/L in December 2017 to 41 mg/L in January 2018. The EPL 100 percentile limit of 50 mg/L was not exceeded in either discharge event.

Surface water oil and grease levels are presented in Figure 4.

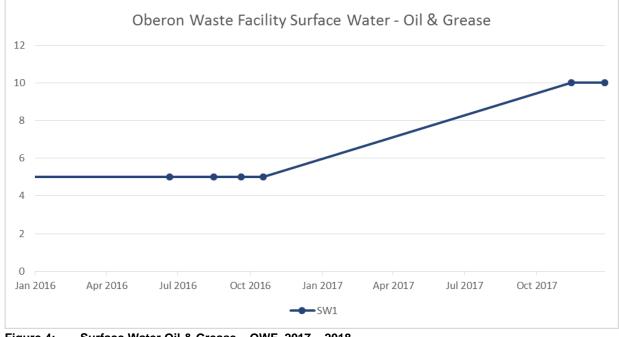


Figure 4: Surface Water Oil & Grease – OWF, 2017 – 2018

Oil and grease was recorded at 10 mg/L in the surface water sample collected in December 2017, and less than the laboratory limit of reporting (LOR) of 10 mg/L in the surface water sample collected in January 2018 (the oil & grease LOR was raised in the January 2018 sampling event due to a lower volume than required being collected in the rising stage sampler).

The EPL 100 percentile discharge limit of 10 mg/L was not exceeded for any sample collected.

3.3 GROUNDWATER

Groundwater monitoring is to consist of biannual water level measurements at all 10 piezometers, with samples being collected twice annually from the shallow piezometers and once annually from the deep piezometers.

Groundwater is intermittently present in the monitoring wells at the facility, and sampling of groundwater cannot consistently be conducted.

The November 2017 biannual monitoring round was able to collect samples from three piezometers, and five samples were able to be collected from the May 2018 monitoring round

3.3.1 GROUNDWATER LEVELS

Groundwater level measurements are presented for all monitoring stations in **Appendix A**, **Table A2** and are illustrated below in **Figure 5**.

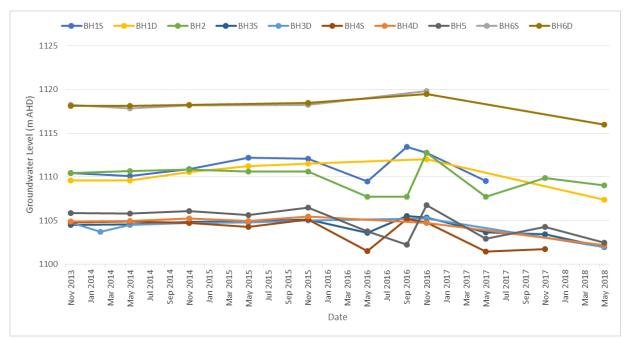


Figure 5: Groundwater Levels – OWF, 2017 – 2018

Comparative reduced groundwater levels indicated that piezometer BH6 is the most up-gradient monitoring point and the western piezometers at BH3 (pair), BH4 (pair) and BH5 are the most down-gradient. The range across the site in November 2017 was observed to be 8.12 m and the range across the site in May 2018 was observed to be 14.06 m. The largest variation recorded between the 2 monitoring rounds in the reporting period (i.e. from November 2017 to May 2017) was a decrease of 1.82 m at BH5, noting that no water was present in piezometers BH1S, BH4S or BH6S in May 2018.

It is noted that monitoring piezometer BH3D (EPL Point 6) was re-established in January 2014 following an inability to sample in November 2013. The piezometer has not been resurveyed following re-establishment and as such the reduced standing water level may be slightly inaccurate.

3.3.2 GROUNDWATER QUALITY

Analytical results for each groundwater monitoring station sampled in the reporting period are presented in **Appendix A**, **Table A3**.

Physical Parameters

Laboratory measured pH ranged from 5.9 pH units at BH2 (November 2017) to 7.1 pH units at BH5 (November 2017). The pH values of groundwater at BH1D, BH3S, BH4D, BH5 and BH6D were considered suitable for livestock drinking water; within the guideline range of 6.5 to 8.5 pH units (Markwick, 2007).

Electrical conductivity ranged from 100 μ S/cm at BH1D (May 2018) to 1,200 μ S/cm at BH5 (November 2017).

Total dissolved solids were found to range from 89 mg/L at BH1D (May 2018) to 660 mg/L at BH5 (November 2017), and within previously recorded ranges. All values were considered suitable for consumption by the most susceptible livestock category, poultry (<3000 mg/L, ANZECC & ARMCANZ, 2000).

Total alkalinity concentrations ranged from 24 mgCaCO₃/L at BH1D (May 2018) to 460 mgCaCO₃/L at BH5 (November 2017). All values were consistent with historical results, however alkalinity recorded at BH5 (November 2017) exceeded the guideline hardness value for potential fouling of waters (350 mg/L, ANZECC & ARMCANZ, 2000).

Chemical Properties

Exchangeable lons

Chloride concentrations ranged from 4.7 mg/L at BH4D (May 2018) to 69 mg/L at BH2 (November 2017 and May 2018). All concentrations were significantly lower than the guideline value for irrigation to moderately tolerant crops (700 mg/L, ANZECC & ARMCANZ, 2000).

Sulfate concentrations ranged from below the laboratory LOR of 1 mg/L at BH2 (November 2017 and May 2018), to 160 mg/L at BH5 (November 2017). All concentrations were significantly lower than the 1,000 mg/L guideline value for livestock drinking water (ANZECC & ARMCANZ, 2000).

Fluoride concentrations ranged from below the laboratory LOR of 0.1 mg/L at BH1D (May 2018) and BH2 (May 2018), 0.25 mg/L at BH4D (May 2018). These values are lower than the livestock drinking water guideline value (2.0 mg/L, ANZECC & ARMCANZ, 2000).

Calcium concentrations ranged from 1.4 mg/L at BH2 (November 2017) to 13 mg/L at BH4D (May 2018). All concentrations were significantly lower than the livestock drinking water guideline value of 1,000 mg/L (ANZECC & ARMCANZ, 2000).

Magnesium concentrations ranged from 4 mg/L at BH1D (May 2018) to 74 mg/L at BH5 (November 2017).

Potassium concentrations ranged from 0.3 mg/L at BH2 (November 2017) to 2.9 mg/L at BH1D (May 2018).

Sodium concentrations were recorded to be highest at 5 at 170 mg/L (November 2017), whilst BH1D recoded the lowest sodium concentration in groundwater at 10 mg/L (May 2018). These values are below the guideline for irrigation of moderately tolerant crops (460 mg/L, ANZECC & ARMCANZ, 2000), and the conservative aesthetic guideline for human drinking water (180 mg/L, NHMRC & NRMMC, 2011).

Nutrients

Ammonia was low across the facility, ranging from below the LOR of 0.01 mgN/L at BH3D (May 2018), to 0.07 mgN/L at BH2 (May 2018). All values were below the conservative aesthetic guideline for ammonia in human drinking water (0.41 mgN/L, NHMRC & NRMMC, 2011).

Nitrite was recorded at below the laboratory LOR (<0.01 mgN/L) in all groundwater samples. Results were significantly lower than the livestock drinking water guideline value of 9.12 mgN/L (ANZECC & ARMCANZ, 2000).

Nitrate was lowest at BH3S, below the laboratory LOR of 0.05 mgN/L (November 2017) and most elevated at BH2 at 17.0 mgN/L (November 2017). These results are lower than the livestock drinking water guideline value for nitrate (90.29 mg/L, ANZECC & ARMCANZ, 2000).

Total phosphorus was recorded to range from velow the laboratory LOR of 0.02 mg/L at BH1D (May 2018) to 1.7 mg/L at BH3S (November 2017). While all values were below the upper limit of the short-term crop irrigation range, only groundwater sampled from BH1D was considered suitable for long-term irrigation (ANZECC & ARMCANZ, 2000).

Organics

Total organic carbon in groundwater was recorded to range from 0.5 mg/L at BH4D (May 2018), to 7.3 mg/L at BH5 (November 2017).

Total phenolics were not detected in any groundwater sample collected during the reporting period (<0.014 mg/L).

Organochlorine and organophosphorus pesticides were not detected in any annual sample (<0.010 mg/L and <0.014 mg/L respectively).

Polychlorinated biphenyls (PCBs) were not detected in any annual sample (<0.001 mg/L).

Polynuclear aromatic hydrocarbons (PAHs) were not detected in any annual sample (<0.0005 mg/L).

Total petroleum (TPH) and total recoverable hydrocarbons (TRH) were not detected in any annual sample (<0.2 mg/L).

Benzene, toluene, ethylbenzene, xylene and naphthalene (BTEXN) were not detected in any annual sample (BTEX <0.001 mg/L and naphthalene <0.005 mg/L).

Metals

Aluminium was not recorded at concentrations above the laboratory LOR of 5 μ g/L at any piezometers. All concentrations were below the long-term crop irrigation value and livestock drinking water guideline value (5 mg/L, ANZECC & ARMCANZ, 2000).

Arsenic concentrations ranged from below the LOR of 1 μ g/L at multiple piezometers, to 15 μ g/L at BH4D (May 2017). No exceedances of the long-term crop irrigation and livestock drinking water guidelines (respectively 100 μ g/L and 500 μ g/L, ANZECC & ARMCANZ, 2000) were recorded for arsenic in groundwater.

Barium concentrations in groundwater ranged from 12 μ g/L at BH6D (May 2018) to 420 μ g/L at BH2 (May 2018). This was lower than the conservative health guideline for human drinking water (2,000 μ g/L, NHMRC & NRMMC, 2011).

Cadmium was only detected above the laboratory LOR in groundwater at BH2 at a of 0.0001 μ g/L (November 2017), which was below the conservative human health drinking water guideline (0.002 μ g/L, NHMRC & NRMMC, 2011) and the long-term crop irrigation and livestock drinking water guidelines (0.01 mg/L, ANZECC & ARMCANZ, 2000).

Chromium was only detected above the laboratory LOR in groundwater at BH2 at a concentration of 0.2 μ g/L (May 2018) and was below the conservative human health drinking water guideline (50 μ g /L, NHMRC & NRMMC, 2011) and the long-term crop irrigation and livestock drinking water guidelines (10 μ g/L, ANZECC & ARMCANZ, 2000).

Copper in groundwater was detected up to 1 μ g/L at BH2 (May 2018), which was below the conservative human health drinking water guideline (2,000 μ g /L, NHMRC & NRMMC, 2011), and the long-term crop irrigation and livestock drinking water guidelines (respectively 200 μ g /L and 400 μ g /L, ANZECC & ARMCANZ, 2000).

Cobalt ranged from below the LOR of 1 μ g/L at BH3D (May 2018) and BH4D (May 2018), to 2 μ g/L at BH1D (May 2018) and BH2 (May 2018). All recorded concentrations of cobalt in groundwater were below the long-term crop irrigation and livestock drinking water guidelines (respectively 50 μ g/L and 1,000 μ g/L, ANZECC & ARMCANZ, 2000).

Iron was observed to range from below the LOR of 5 μ g/L at BH2 (May 2018) to 3,400 μ g/L at BH4D (May 2018). While all values were below the short-term irrigation guideline value of 10,000 μ g/L, groundwater at piezometers BH1D, BH2 and BH3D were considered suitable for long-term irrigation (ANZECC & ARMCANZ, 2000) based on iron concentrations being below 200 μ g/L.

Lead was not detected in groundwater samples from any piezometer at a concentration greater than the laboratory LOR of 1 μ g/L. Lead in groundwater was below the long-term crop irrigation and livestock drinking water guidelines (respectively 2,000 μ g/L and 100 μ g/L, ANZECC & ARMCANZ, 2000) and below the conservative human health drinking water guideline (10 μ g/L, NHMRC & NRMMC, 2011).

Manganese concentrations ranged from 3 μ g/L at BH3D (May 2018) to 620 μ g/L at BH6D (May 2018). Samples collected from monitoring stations BH4D and BH6D exceeded the long-term (<100 years) crop irrigation guideline value of 200 μ g/L. All concentrations were below the short-term (<20 years) guideline value of 10,000 μ g /L (ANZECC & ARMCANZ, 2000).

Mercury was below the LOR (<0.0001 mg/L) in all groundwater samples and below relevant guideline values.

Zinc concentrations in groundwater ranged from 6 μ g/L at BH3D (May 2018), to 26 μ g/L at BH2 (May 2018). All recorded zinc concentrations in groundwater were below the conservative human health aesthetic guideline (3,000 μ g/L, NHMRC & NRMMC, 2011) and the long-term crop irrigation and livestock drinking water guidelines (respectively 2,000 μ g/L and 20,000 μ g/L, ANZECC & ARMCANZ, 2000).

3.4 LANDFILL GAS

Monitoring of accumulated building gas was conducted monthly throughout the reporting period. No gas in buildings was detected in in any monitoring event.

Other Monitoring Data

4.1 PUBLIC CONCERNS AND COMPLAINTS

There were no environmental, operational or pollution complaints received for the Oberon Waste Facility during the annual reporting period.

4.2 SOLID WASTE QUANTITIES

The Oberon Waste Facility is licensed to receive general solid waste (non-putrescible and putrescible), waste tyres, and asbestos waste. The total quantity of waste received into the landfill for the reporting period was 10,007.6 tonnes. This quantity is less than the limit set under Licence Condition L3.1, which states that the total amount of general solid waste (putrescible and non-putrescible), asbestos and waste tyres disposed of at the premises must not exceed 15,000 tonnes per annum.

4.3 EFFECTIVE COMPACTION

The licence for Oberon Waste Facility requires a minimum waste compaction of 0.65 t/m³ (EPL Condition O6.9), and is calculated by dividing the tonnage received by the volume utilised. A volumetric survey of the facility at the end of the reporting period was completed, and compared to the volumetric survey conducted at the commencement of the 2016-2017 reporting period. A total of 29,500 m³ of void space was consumed in this 24 month period (refer to **Appendix C**).

In addition to the 10,007.6 tonnes received at the Oberon Waste Facility in the 2017-2018 period, 12,271.8 tonnes of waste were recorded as received in the prior 2016-2017 period, totalling 22,279.4 tonnes of waste received in the period between the two volumetric surveys. Accordingly, the compaction rate has been calculated to be 0.76 tonnes/m³, greater than the minimum requirement of the EPL.

All exposed landfilled waste is generally covered daily to a minimum depth of 150 mm and compacted at the end of each day prior to ceasing operations. Compaction is achieved using a 28 tonne bulldozer and/or a 25 tonne excavator.

Summary

This section provides a summary of the monitoring results presented in Section 3 and Section 4.

5.1 MONITORING

5.1.1 SURFACE WATER

Discharge samples from SW1 as required by to be collected by EPL occurred in December 2017 and January 2018.

No exceedances of the EPL discharge limits (licence condition L2.4) were recorded for TSS, EC, pH or oil & grease.

5.1.2 GROUNDWATER

Comparative reduced groundwater levels indicated that piezometer BH6 is the most up-gradient monitoring point and the western piezometers at BH3 (pair), BH4 (pair) and BH5 are the most down-gradient. The range across the site in November 2017 was observed to be 8.12 m and the range across the site in May 2018 was observed to be 14.06 m. The largest variation recorded between the 2 monitoring rounds in the reporting period (i.e. from November 2017 to May 2017) was a decrease of 1.82 m at BH5, noting that no water was present in piezometers BH1S, BH4S or BH6S in May 2018.

It is noted that monitoring piezometer BH3D (EPL Point 6) was re-established in January 2014 following an inability to sample in November 2013. The piezometer has not been resurveyed following re-establishment and as such the reduced standing water level may be slightly inaccurate.

Organic contaminants, including PCBs, pesticides, phenolics, PAHs and petroleum hydrocarbons, were not detected in any groundwater sample. No significant changes were observed between the monitoring rounds.

5.1.3 LANDFILL GAS

Monitoring of accumulated building gas was conducted monthly throughout the reporting period. No gas in buildings was detected in in any monitoring event.

5.1.4 COMPLAINTS

There were no environmental, operational or pollution complaints received for the Oberon Waste Facility during the annual reporting period.

5.2 SOLID WASTE QUANTITIES

The total quantity of waste received into the landfill for the reporting period was 10,007.6 tonnes. This quantity is below the limit set under Licence Condition L3.1.

5.3 WASTE COMPACTION

A total of 22,279.4 tonnes of waste was received at the Oberon Waste Facility in the period between volumetric surveys conducted in 2016 and 2018, which identified an increase of 29,500 m³ in volume. The compaction rate has been calculated to be 0.76 tonnes/m³, greater than the minimum requirement of the EPL.

All exposed landfilled waste is generally covered daily to a minimum depth of 150 mm and compacted at the end of each day prior to ceasing operations. Compaction is achieved using a 28 tonne bulldozer and/or a 25 tonne excavator.

Conclusion and Recommendations

6.1 CONCLUSION

The results of the groundwater sampling indicated relatively consistent groundwater conditions at the Oberon Waste Facility, indicating little to no evidence of adverse impact arising from the landfill.

No exceedances of the EPL discharge limit for surface water were recorded.

The waste quantity landfilled was below the EPL limit, and the average compaction rate was calculated to be greater than the minimum requirement of the EPL.

6.2 **RECOMMENDATIONS**

It is recommended that environmental monitoring be continued at the Oberon Waste Facility in accordance with existing monitoring requirements of EPL 20289 and the Oberon Waste Facility LEMP.

References

Australia and New Zealand Environment and Conservation Council and the Agriculture and Resource Management Council of Australia and New Zealand (ANZECC & ARMCANZ) 2000, Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

Markwick, G 2007, 'Water requirements for sheep and cattle', Primefact 326, New South Wales Department of Primary Industries, Australia.

National Health and Medical Research Council and the Natural Resource Management Ministerial Council (NHMRC & NRMMC) 2011, *National Water Quality Management Strategy: Australian Drinking Water Guidelines*, updated 2015.

Oberon Shire Council 2013, Landfill Environmental Management Plan - Oberon Waste Facility, Australia.

TABLE A1 - EPL 20289 OBERON WASTE FACILITY- GROUNDWATER GAUGING RESULTS

Definitions:

Stickup:	Height of piezometer pipe above ground surface.
Ground Elev:	Actual elevation of ground at the piezometer relative to an arbitrary datum. All ground elevations are
	measured to the same datum, hence Piezo GWLs are relative to each other.
GWL:	Actual elevation of groundwater at the piezometer relative to an arbitrary datum.
Measured:	Depth of groundwater measured from the top of the piezometer pipe.
WLNM:	Water Level Not Measured (Dry)

	BH1S		BH1D		BH2		BH3S		BH3D		BH4S		BH4D		BH5		BH6S		BH6D	
		GWL																		
Date	Measured	(mAHD)	Measured																	
19-Nov-13	4.41	1110.46	5.20	1109.61	3.06	1110.46	1.63	1104.51	1.18	1104.78	1.40	1104.75	1.27	1104.89	1.89	1105.86	4.83	1118.24	5.06	1118.14
25-Feb-14	-		-		-		-		2.28	1103.68	-		-		-					
12-May-14	4.80	1110.07	5.20	1109.61	2.85	1110.67	1.58	1104.56	1.48	1104.48	1.26	1104.89	1.23	1104.93	1.97	1105.78	5.20	1117.87	5.07	1118.13
5-Nov-14	3.99	1110.88	4.28	1110.53	2.72	1110.80	1.31	1104.83	1.24	1104.72	1.43	1104.72	0.92	1105.24	1.66	1106.09	4.90	1118.17	4.94	1118.26
6-May-15	2.67	1112.20	3.58	1111.23	2.90	1110.62	1.27	1104.87	1.18	1104.78	1.91	1104.24	1.21	1104.95	2.11	1105.64	5.87		WLNM	
23-Nov-15	2.82	1112.05	3.33	1111.48	2.90	1110.62	1.04	1105.10	0.94	1105.02	1.05	1105.10	0.70	1105.46	1.30	1106.45	4.83	1118.24	4.73	1118.47
19-May-16	5.42	1109.45	WLNM		5.80	1107.72	2.55	1103.59	WLNM		4.65	1101.50	WLNM		3.97	1103.78	5.87		WLNM	
5-Sep-16	1.46	1113.41	WLNM		5.80	1107.72	0.61	1105.53	WLNM		0.97	1105.18	WLNM		5.50	1102.25	5.87		WLNM	
7-Nov-16	2.14	1112.73	2.80	1112.01	0.74	1112.78	0.82	1105.32	0.76	1105.20	1.35	1104.80	1.45	1104.71	0.99	1106.76	3.22	1119.85	3.72	1119.48
17-May-17	5.37	1109.50	WLNM		5.80	1107.72	2.51	1103.63	WLNM		4.73	1101.42	WLNM		4.87	1102.88	5.87		WLNM	
13-Nov-17	5.50		WLNM		3.68	1109.84	2.71	1103.43	WLNM		4.43	1101.72	WLNM		3.47	1104.28	5.87		WLNM	
28-May-18	WLNM		7.42	1107.39	4.50	1109.02	4.22	1101.92	4.01	1101.95	WLNM		4.00	1102.16	5.29	1102.46	WLNM		7.22	1115.98

				Sample ID	SW1	SW1
			Sa	ample Date	5/12/2017	16/01/2018
Group	Analyte	LOR	Units	Criteria	PS	PS
Physical Parameters	pH (Lab)	-	No unit	6.0 - 8.5	6.9	7.1
	Electrical Conductivity (Lab)	2	μS/cm	-	400	630
	Total Suspended Solids	5	mg/L	50	46	41
	Oil & Grease	5	mg/L	10	10	-
	Oil & Grease	10	mg/L	10	-	< 10

mg/L	milligrams per litre
μS/cm	microsiemens per centimetre
LOR	limit of reporting
PS	primary sample
Criteria	Criteria adopted from Australian and New Zealand Environment and Conservation Council (ANZECC) Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) Australian and New Zealand Guidelines for Fresh and Marine Water Quality - 'Primary Industries: Water quality for irrigation and general water use', 2000 and/or NSW EPA Environment Protection Licence 20289 'Limit Conditions - L2.4 Water and/or Land Concentration
	within criteria
	criteria exceeded

TABLE A3: OBERON WASTE FACILITY - RESULTS OF LABORATORY ANALYSIS, GROUNDWATER

				Sample ID	BH1D	BH2	BH2	BH3D	BH3S	BH4D	BH5	BH6D
				ample Date	28/05/2018		28/05/2018			28/05/2018		
Group	Analyte	LOR	Units	Criteria	PS	PS	PS	PS	PS	PS	PS	PS
Physical Parameters	pH (Lab)	-	No unit	6.0 - 8.5	6	5.9	6.1	6.3	6.7	6.7	7.1	6.9
	Electrical Conductivity (Lab)	2	μS/cm	-	100	470	470	180	590	220	1200	220
	Total Dissolved Solids	10	mg/L	3000	89	300	310	150	360	150	660	140
Alkalinity	Total Alkalinity as CaCO3	5	mg/L	350	24	56	57	74	250	110	460	99
Anions	Chloride	1	mg/L	350	11	69	69	13	32	4.7 0.25	36	11
	Fluoride	0.1	mg/L	1	< 0.1		< 0.1	0.16	- 10	4.5	160	0.11
Collins of	Sulfate (SO4)	1	mg/L	1000	9.1 2.8	<1	<1	6.6 4.8	5.1	4.5	160	3.3 5.1
Cations	Calcium (Ca)	0.2	mg/L	1000		39		4.8	5.1	13	74	5.1
	Magnesium (Mg) Potassium (K)	0.1	mg/L mg/L	-	4 2.9	0.3	40	1.5	0.5	14	0.9	2.6
	Sodium (Na)	0.1	mg/L	230	10	16	18	1.5	100	1.4	170	12
Forms of Carbon	Total Organic Carbon	0.3	mg/L	230	0.6	10	1.7	0.6	4.9	0.5	7.3	1.2
Nutrients	Ammonia (NH3) as N	0.01	mg/L	-	0.01	0.04	0.07	< 0.01	0.02	0.02	0.02	0.02
Nuclients	Nitrate (NO3) as N	0.01	mg/L	-	-	-	-	- 0.01	< 0.05	-	-	-
	Nitrate (NO3) as N	0.005	mg/L	-	0.077	17	16	0.067		0.02	3	0.087
	Nitrite (NO2) as N	0.005	mg/L	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	Total Phosphorus	0.02	mg/L	0.05	< 0.02	0.69	1.5	0.08	1.7	0.26	0.06	0.33
Trace Metals	Mercury (Hg)	0.0001	mg/L	2	< 0.0001	-	< 0.0001	< 0.0001	-	< 0.0001	-	< 0.000
	Aluminium (Al)	5	μg/L	5000	< 5	-	< 5	< 5	-	< 5	-	< 5
	Arsenic (As)	1	μg/L	100	< 1	-	<1	<1	-	15	-	9
	Barium (Ba)	1	μg/L	-	170	-	420	68	-	22	-	12
	Cadmium (Cd)	0.1	μg/L	10	< 0.1	-	0.2	< 0.1	-	< 0.1	-	< 0.1
	Chromium (Cr)	1	μg/L	100	< 1	-	< 1	< 1	-	< 1	-	< 1
	Cobalt (Co)	1	μg/L	50	2	-	2	< 1	-	< 1	-	1
	Copper (Cu)	1	μg/L	200	< 1	-	1	< 1	-	< 1	-	< 1
	Iron (Fe)	5	μg/L	200	6	-	< 5	6	-	3400	-	2300
	Lead (Pb)	1	μg/L	2000	< 1	-	< 1	< 1	-	< 1	-	< 1
	Manganese (Mn)	1	μg/L	200	23	-	100	3	-	560	-	620
	Zinc (Zn)	5	μg/L	2000	17	-	26	6	-	17	-	6
OC Pesticides	Aldrin	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Alpha BHC	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Alpha Chlordane	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Alpha Endosulfan	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Beta BHC	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Beta Endosulfan	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Delta BHC	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Dieldrin	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Endosulfan sulphate	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Endrin Foodstoordelande	0.1	μg/L	-	< 0.1 < 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1 < 0.1
	Endrin aldehyde	0.1	μg/L	-	< 0.1	-	< 0.1 < 0.1	< 0.1 < 0.1	-	< 0.1 < 0.1	-	< 0.1
	Endrin ketone Heptachlor	0.1	μg/L μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Heptachlor epoxide	0.1	μg/L μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Hexachlorobenzene (HCB)	0.1	μg/L	-	< 0.1		< 0.1	< 0.1		< 0.1		< 0.1
	Lindane (gamma BHC)	0.1	μg/L μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Methoxychlor	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	p,p'-DDD	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	p,p'-DDE	0.1	μg/L		< 0.1	_	< 0.1	< 0.1	_	< 0.1	_	< 0.1
	p,p'-DDT	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	o,p'-DDE	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Gamma Chlordane	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	trans-Nonachlor	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	o,p'-DDD	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	o,p'-DDT	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Isodrin	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Mirex	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
OP Pesticides	Dichlorvos	0.5	μg/L	-	< 0.5	-	< 0.5	< 0.5	-	< 0.5	-	< 0.5
	Dimethoate	0.5	μg/L	-	< 0.5	-	< 0.5	< 0.5	-	< 0.5	-	< 0.5
	Ethion	0.2	μg/L	-	< 0.2	-	< 0.2	< 0.2	-	< 0.2	-	< 0.2
	Malathion	0.2	μg/L	-	< 0.2	-	< 0.2	< 0.2	-	< 0.2	-	< 0.2
	Diazinon (Dimpylate)	0.5	μg/L	-	< 0.5	-	< 0.5	< 0.5	-	< 0.5	-	< 0.5
	Chlorpyrifos (Chlorpyrifos Ethyl)	0.2	μg/L	-	< 0.2	-	< 0.2	< 0.2	-	< 0.2	-	< 0.2
	Parathion-ethyl (Parathion)	0.2	μg/L	-	< 0.2	-	< 0.2	< 0.2	-	< 0.2	-	< 0.2
	Bromophos Ethyl	0.2	μg/L	-	< 0.2	-	< 0.2	< 0.2	-	< 0.2	-	< 0.2
	Azinphos-methyl	0.2	μg/L	-	< 0.2	-	< 0.2	< 0.2	-	< 0.2	-	< 0.2
	Fenitrothion	0.2	μg/L	-	< 0.2	-	< 0.2	< 0.2	-	< 0.2	-	< 0.2
	Methidathion	0.5	μg/L		< 0.5	1	< 0.5	< 0.5	1	< 0.5	1	< 0.5

TABLE A3: OBERON WASTE FACILITY - RESULTS OF LABORATORY ANALYSIS, GROUNDWATER

	Sample ID BH1D BH2 BH3D BH3S BH4D BH5											
						BH2	BH2	BH3D	BH3S	BH4D	BH5	BH6D
				Sample Date		13/11/2017	28/05/2018		13/11/2017	28/05/2018	13/11/2017	28/05/2018
Group	Analyte	LOR	Units	Criteria	PS	PS	PS	PS	PS	PS	PS	PS
Phenolics	Total Phenols	0.01	mg/L	-	< 0.01	-	< 0.01	< 0.01	-	< 0.01	-	< 0.01
Polynuclear Aromatic Hydrocarbons	Acenaphthene	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Acenaphthylene	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Anthracene	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Benzo(a)anthracene	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Benzo(a)pyrene	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Benzo(b&j)fluoranthene	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Benzo(ghi)perylene	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Benzo(k)fluoranthene	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Chrysene	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Dibenzo(ah)anthracene	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Fluoranthene	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Fluorene	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Indeno(1,2,3-cd)pyrene	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Naphthalene	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Phenanthrene	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Pyrene	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	2-methylnaphthalene	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	1-methylnaphthalene	0.1	μg/L	-	< 0.1	-	< 0.1	< 0.1	-	< 0.1	-	< 0.1
	Total PAHs	1	μg/L	-	<1	-	<1	<1	-	<1	-	<1
BTEXN Analytes	Benzene (F0)	0.5	μg/L	-	< 0.5	-	< 0.5	< 0.5	-	< 0.5	-	< 0.5
	Toluene	0.5	μg/L	-	< 0.5	-	< 0.5	< 0.5	-	< 0.5	-	< 0.5
	Ethylbenzene	0.5	μg/L	-	< 0.5	-	< 0.5	< 0.5	-	< 0.5	-	< 0.5
	meta- & para-Xylene	1	μg/L	-	<1	-	<1	<1	-	<1	-	<1
	ortho-Xylene	0.5	μg/L	-	< 0.5	-	< 0.5	< 0.5	-	< 0.5	-	< 0.5
	Total Xylenes	1.5	μg/L	-	< 1.5	-	< 1.5	< 1.5	-	< 1.5	-	< 1.5
	Sum of BTEX	3	μg/L	-	< 3	-	< 3	< 3	-	< 3	-	< 3
	Naphthalene	0.5	μg/L	-	< 0.5	-	< 0.5	< 0.5	-	< 0.5	-	< 0.5
Total Petroleum Hydrocarbons	TRH C6-C9	40	μg/L	-	< 40	-	< 40	< 40	-	< 40	-	< 40
	TRH C10-C14	50	μg/L	-	< 50	-	< 50	< 50	-	< 50	-	< 50
	TRH C15-C28	200	μg/L	-	< 200	-	< 200	< 200	-	< 200	-	< 200
	TRH C29-C36	200	μg/L	-	< 200	-	< 200	< 200	-	< 200	-	< 200
	TRH C10-C36	450	μg/L	-	< 450	-	< 450	< 450	-	< 450	-	< 450
	TRH C37-C40	200	µg/L	-	< 200	-	< 200	< 200	-	< 200	-	< 200
Total Recoverable Hydrocarbons	Benzene (F0)	0.5	μg/L	-	< 0.5	-	< 0.5	< 0.5	-	< 0.5	-	< 0.5
	TRH C6-C10	50	μg/L	-	< 50	-	< 50	< 50	-	< 50	-	< 50
	TRH C6-C10 less BTEX (F1)	50	μg/L		< 50	-	< 50	< 50	-	< 50	- 1	< 50
	TRH >C10-C16 (F2)	60	μg/L	-	< 60	-	< 60	< 60	-	< 60	-	< 60
	TRH >C10-C16 less Naphthalene (F2)	60	μg/L	-	< 60	-	< 60	< 60	-	< 60	-	< 60
	TRH >C16-C34 (F3)	500	μg/L		< 500	-	< 500	< 500	-	< 500	- 1	< 500
	TRH >C34-C40 (F4)	500	μg/L	-	< 500	-	< 500	< 500	-	< 500	-	< 500
	TRH C10-C40	650	μg/L	-	< 650	-	< 650	< 650	-	< 650	-	< 650

mg/L milligrams per litre

μS/cm microsiemens per centimetre

LOR limit of reporting

PS primary sample

Criteria Criteria adopted from Australian and New Zealand Environment and Conservation Council (ANZECC) Agriculture and Resource Management Council of Australia and New Zealand (ANMCANZ) Australian and New Zealand Guidelines for Fresh and Marine Water Quality - Primary Industries: Water quality for irrigation and general water use¹, 2000

and/or

NSW EPA Environment Protection Licence 20289 'Limit Conditions - L2.4 Water and/or Land Concentration Limits', 2013 within criteria

criteria exceeded

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORT DETAI	LABORATORY DETAILS						
Contact	Brendan Stuart	Manager	Huong Crawford						
Client	GEOLYSE PTY LIMITED	Laboratory	SGS Alexandria Environmental						
Address	PO BOX 1963 NSW 2800	Address	Unit 16, 33 Maddox St Alexandria NSW 2015						
Telephone	61 2 68841525	Telephone	+61 2 8594 0400						
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499						
Email	bstuart@geolyse.com	Email	au.environmental.sydney@sgs.com						
Project	217505 - Oberon WF	SGS Reference	SE172656 R0						
Order Number	(Not specified)	Date Received	16 Nov 2017						
Samples	3	Date Reported	23 Nov 2017						

COMMENTS _

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

Ion Chromatography - The Limit of Reporting (LOR) has been raised for NO3-N due to high conductivity of the sample requiring dilution.

SIGNATORIES .

Dong Liang Metals/Inorganics Team Leader

hone

Shane McDermott Inorganic/Metals Chemist

flores

Huong Crawford Production Manager

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

2015 Australia 2015 Australia t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

ANALYTICAL REPORT

	S	mple Number ample Matrix Sample Date Sample Name	SE172656.001 Water 13 Nov 2017 BH2	SE172656.002 Water 13 Nov 2017 BH3(S)	SE172656.003 Water 13 Nov 2017 BH5
Parameter	Units	LOR			
Anions by Ion Chromatography in Water Method: AN245 Te	sted: 17/11/2	017			
Chloride	mg/L	1	69	32	36
Nitrate Nitrogen, NO3-N	mg/L	0.005	17	<0.050↑	3.0
Sulfate, SO4	mg/L	1	<1.0	10	160
Alkalinity Method: AN135 Tested: 17/11/2017				1	
Total Alkalinity as CaCO3	mg/L	5	56	250	460
Total Dissolved Solids (TDS) in water Method: AN113 Tester Total Dissolved Solids Dried at 175-185°C Image: Comparison of the second seco	d: 21/11/2017 mg/L	10	300	360	
Forms of Carbon Method: AN190 Tested: 22/11/2017					660
Forms of Carbon Method: AN190 Tested: 22/11/2017 Total Organic Carbon as NPOC Image: Carbon as NPOC Image: Carbon as NPOC	mg/L	0.2	1.0	4.9	7.3
Total Organic Carbon as NPOC pH in water Method: AN101 Tested: 17/11/2017					7.3
Total Organic Carbon as NPOC	mg/L No unit	0.2	1.0 5.9	4.9 6.7	
Total Organic Carbon as NPOC pH in water Method: AN101 Tested: 17/11/2017		-			7.3

Magnesium, Mg

Potassium, K

Sodium, Na

ANALYTICAL REPORT

74

0.9

170

16

0.5

100

	Sample Number SE Sample Matrix			SE172656.002	SE172656.003
	5			Water 13 Nov 2017	Water 13 Nov 2017
	4	Sample Date Sample Name		BH3(S)	13 NOV 2017 BH5
		sample Name	DHZ	БП З(З)	БЦЭ
Parameter	Units	LOR			
Ammonia Nitrogen by Discrete Analyser (Aquakem) Method:	AN291 Tes	ted: 20/11/2	017		
Ammonia Nitrogen, NH₃ as N	mg/L	0.01	0.04	0.02	0.02
Nitrite in Water Method: AN277 Tested: 20/11/2017 Nitrite Nitrogen, NO2 as N	mg/L	0.005	<0.005	<0.005	<0.005
Total Phosphorus by Kjeldahl Digestion DA in Water Method	: AN279/AN29	3(Sydney o	nly) Tested: 21	11/2017	
Total Phosphorus (Kjeldahl Digestion)	mg/L	0.02	0.69	1.7	0.06
Metals in Water (Dissolved) by ICPOES Method: AN320 Te	sted: 21/11/2)17			
Calcium, Ca	mg/L	0.2	1.4	5.1	12

mg/L

mg/L

mg/L

0.1

0.1

0.5

39

0.3

16

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS pike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Alkalinity Method: ME-(AU)-[ENV]AN135

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Total Alkalinity as CaCO3	LB136716	mg/L	5	<5	0 - 4%	97%

Ammonia Nitrogen by Discrete Analyser (Aquakem) Method: ME-(AU)-[ENV]AN291

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Ammonia Nitrogen, NH ₃ as N	LB136751	mg/L	0.01	<0.01	6 - 71%	108%

Anions by Ion Chromatography in Water Method: ME-(AU)-[ENV]AN245

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Chloride	LB136719	mg/L	1	<0.05	0 - 1%	95%	
Nitrate Nitrogen, NO3-N	LB136719	mg/L	0.005	<0.005	1%	96%	100%
Sulfate, SO4	LB136719	mg/L	1	<1.0	0 - 1%	93%	

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Conductivity @ 25 C	LB136692	µS/cm	2	<2	1%	100%

Forms of Carbon Method: ME-(AU)-[ENV]AN190

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Total Organic Carbon as NPOC	LB136971	mg/L	0.2	<0.2	1%	97%	95%

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
	Reference					/orcecovery	78Recovery
Calcium, Ca	LB136868	mg/L	0.2	<0.2	2 - 3%	95%	106%
Magnesium, Mg	LB136868	mg/L	0.1	<0.1	1 - 2%	95%	
Potassium, K	LB136868	mg/L	0.1	<0.1	2 - 6%	93%	123%
Sodium, Na	LB136868	mg/L	0.5	<0.5	1 - 6%	98%	89%

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Nitrite in Water Method: ME-(AU)-[ENV]AN277

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Nitrite Nitrogen, NO2 as N	LB136751	mg/L	0.005	<0.005	100%

pH in water Method: ME-(AU)-[ENV]AN101

	Parameter	QC	Units	LOR	DUP %RPD	LCS
		Reference				%Recovery
I	pH**	LB136692	No unit	-	1 - 3%	99%

Total Dissolved Solids (TDS) in water Method: ME-(AU)-[ENV]AN113

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Dissolved Solids Dried at 175-185°C	LB136828	mg/L	10	<10	5%	98%

Total Phosphorus by Kjeldahl Digestion DA in Water Method: ME-(AU)-[ENV]AN279/AN293(Sydney only)

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Total Phosphorus (Kjeldahl Digestion)	LB136855	mg/L	0.02	<0.02	22%	108%	108%

METHOD SUMMARY

- METHOD	
AN020	METHODOLOGY SUMMARY Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN113	Total Dissolved Solids: A well-mixed filtered sample of known volume is evaporated to dryness at 180°C and the residue weighed. Approximate methods for correlating chemical analysis with dissolved solids are available. Reference APHA 2540 C.
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN190	TOC and DOC in Water: A homogenised micro portion of sample is injected into a heated reaction chamber packed with an oxidative catalyst that converts organic carbon to carbon dioxide. The CO2 is measured using a non-dispersive infrared detector. The process is fully automated in a commercially available analyser. If required a sugar value can be calculated from the TOC result. Reference APHA 5310 B.
AN190	Chemical oxygen demand can be calculated/estimated based on the O2/C relation as 2.67*NPOC (TOC). This is an estimate only and the factor will vary with sample matrix so results should be interpreted with caution.
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, CI, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B
AN277/WC250.312	Nitrite ions, when reacted with a reagent containing sulphanilamide and N-(1-naphthyl)-ethylenediamine dihydrochloride produce a highly coloured azo dye that is measured photometrically at 540nm.
AN279/AN293(Sydney)	The sample is digested with Sulphuric acid, K2SO4 and CuSO4. All forms of phosphorus are converted into orthophosphate. The digest is cooled and placed on the discrete analyser for colorimetric analysis.
AN291	Ammonia in solution reacts with hypochlorite ions from Sodium Dichloroisocyanuate, and salicylate in the presence of Sodium Nitroprusside to form indophenol blue and measured at 670 nm by Discrete Analyser.
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.

METHOD SUMMARY

METHOD
 Calculation

METHODOLOGY SUMMARY

Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L. If TDS is >500mg/L free or total carbon dioxide cannot be reported. APHA4500CO2 D.

FOOTNOTES _

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received. * NATA accreditation does not cover the
- performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance - The sample was not analysed for this analyte
- NVL Not Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : <u>http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf</u>

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

to - t	Brendan Stuart	Managan	Huong Crawford
Contact		Manager	•
Client	GEOLYSE PTY LIMITED	Laboratory	SGS Alexandria Environmental
Address	PO BOX 1963	Address	Unit 16, 33 Maddox St
	NSW 2800		Alexandria NSW 2015
Telephone	61 2 68841525	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	bstuart@geolyse.com	Email	au.environmental.sydney@sgs.com
Project	217505 - Oberson WF	SGS Reference	SE173460 R0
Order Number	(Not specified)	Date Received	07 Dec 2017
Samples	1	Date Reported	08 Dec 2017

COMMENTS _

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES .

Dong Liang Metals/Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety L

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

2015 Australia 2015 Australia t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

	s	ample Number Sample Matrix Sample Date Sample Name	SE173460.001 Water 05 Dec 2017 SW1
Parameter	Units	LOR	
pH in water Method: AN101 Tested: 8/12/2017			
pH**	No unit	-	6.9
Conductivity and TDS by Calculation - Water Method: AN106 Conductivity @ 25 C	Tested: 4	2 2	400
Oil and Grease in Water Method: AN185 Tested: 8/12/2017]
Oil and Grease	mg/L	5	10
Total and Volatile Suspended Solids (TSS / VSS) Method: AN1	14 Teste	d: 8/12/2017	
Total Suspended Solids Dried at 103-105°C	mg/L	5	46

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Conductivity @ 25 C	LB138226	μS/cm	2	<2	0%	103%

Oil and Grease in Water Method: ME-(AU)-[ENV]AN185

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Oil and Grease	LB138160	mg/L	5	<5	105%

pH in water Method: ME-(AU)-[ENV]AN101

Parameter	QC Reference	Units	LOR	LCS %Recoverv
pH**	LB138226	No unit	-	99%

Total and Volatile Suspended Solids (TSS / VSS) Method: ME-(AU)-[ENV]AN114

Parameter	QC Reference	Units	LOR	MB	LCS %Recoverv
Total Suspended Solids Dried at 103-105°C	LB138202	mg/L	5	<5	97%

METHOD SUMMARY

METHOD	
WEITIOD	METHODOLOGY SUMMARY
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN114	Total Suspended and Volatile Suspended Solids: The sample is homogenised by shaking and a known volume is filtered through a pre-weighed GF/C filter paper and washed well with deionised water. The filter paper is dried and reweighed. The TSS is the residue retained by the filter per unit volume of sample. Reference APHA 2540 D. Internal Reference AN114
AN185	Gravimetric Oil & Grease and Hydrocarbons: A known volume of sample is extracted using an organic solvent and the solvent layer with dissolved oils and greases is transferred to a pre-weighed beaker. The solvent is evaporated over low heating and the beaker reweighed. The concentration of oil and grease is determined by the increase in mass of the collection beaker per volume of sample extracted. O&G is suitable for lubricating oils and other high boiling point products but is not suitable for volatiles. Reference APHA 5520 B. Internal Reference AN185

FOOTNOTES _

IS Insufficient sample for analysis.

SGS

- LNR Sample listed, but not received.
- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte
- NVL Not Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

Contact	Brendan Stuart	Manager	Huong Crawford	
Client	GEOLYSE PTY LIMITED	Laboratory	SGS Alexandria Environmental	
Address	PO BOX 1963 NSW 2800	Address Unit 16, 33 M Alexandria N		
Telephone	61 2 68841525	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	bstuart@geolyse.com	Email	au.environmental.sydney@sgs.com	
Project	217505 - Oberon WF	SGS Reference	SE174464 R0	
Order Number	(Not specified)	Date Received	18 Jan 2018	
Samples	1	Date Reported	19 Jan 2018	

COMMENTS .

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

Oil and Grease - LOR raised due to insufficient sample provided.

SIGNATORIES

Dong Liang Metals/Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278

	S	nple Number ample Matrix Sample Date Sample Name	SE174464.001 Water 16 Jan 2018 SW1
Parameter	Units	LOR	
pH in water Method: AN101 Tested: 18/1/2018			
pH**	No unit	-	7.1
Conductivity and TDS by Calculation - Water Method: AN106 Conductivity @ 25 C	Tested: 18/ µS/cm	2	630
	µS/cm	2	630
Oil and Grease in Water Method: AN185 Tested: 19/1/2018	-		
Oil and Grease	mg/L	5	<10↑
Total and Volatile Suspended Solids (TSS / VSS) Method: AN1	14 Tested:	19/1/2018	

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Conductivity @ 25 C	LB139813	µS/cm	2	<2	103%

Oil and Grease in Water Method: ME-(AU)-[ENV]AN185

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Oil and Grease	LB139828	mg/L	5	<5	104%

pH in water Method: ME-(AU)-[ENV]AN101

Parameter	QC Units Reference		LOR	LCS %Recovery
pH**	LB139813	No unit	-	99%

Total and Volatile Suspended Solids (TSS / VSS) Method: ME-(AU)-[ENV]AN114

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Total Suspended Solids Dried at 103-105°C	LB139831	mg/L	5	<5	15%	97%

METHOD SUMMARY

METHOD	
WEITIOD	METHODOLOGY SUMMARY
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN114	Total Suspended and Volatile Suspended Solids: The sample is homogenised by shaking and a known volume is filtered through a pre-weighed GF/C filter paper and washed well with deionised water. The filter paper is dried and reweighed. The TSS is the residue retained by the filter per unit volume of sample. Reference APHA 2540 D. Internal Reference AN114
AN185	Gravimetric Oil & Grease and Hydrocarbons: A known volume of sample is extracted using an organic solvent and the solvent layer with dissolved oils and greases is transferred to a pre-weighed beaker. The solvent is evaporated over low heating and the beaker reweighed. The concentration of oil and grease is determined by the increase in mass of the collection beaker per volume of sample extracted. O&G is suitable for lubricating oils and other high boiling point products but is not suitable for volatiles. Reference APHA 5520 B. Internal Reference AN185

FOOTNOTES _

IS Insufficient sample for analysis.

SGS

- LNR Sample listed, but not received.
- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte
- NVL Not Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ontact	Brendan Stuart	Manager	Huong Crawford
Client	GEOLYSE PTY LIMITED	Laboratory	SGS Alexandria Environmental
Address	PO BOX 1963 NSW 2800	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 68841525	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	bstuart@geolyse.com	Email	au.environmental.sydney@sgs.com
Project	217505 - Oberon WF	SGS Reference	SE179733 R0
Order Number	(Not specified)	Date Received	30 May 2018
Samples	5	Date Reported	06 Jun 2018

COMMENTS _

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES .

Akheeqar Beniameen Chemist

km/n/

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

ions

Shane McDermott Inorganic/Metals Chemist

Kamrul Ahsan Senior Chemist

Teresa Nguyen Organic Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety U

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

Member of the SGS Group Page 1 of 21

	s	mple Number Sample Matrix Sample Date Sample Name	SE179733.001 Water 28 May 2018 BH2	SE179733.002 Water 28 May 2018 BH1(D)	SE179733.003 Water 28 May 2018 BH3(D)	SE179733.004 Water 28 May 2018 BH4(D)
Parameter	Units	LOR				
VOCs in Water Method: AN433 Tested: 31/5/2018						
Monocyclic Aromatic Hydrocarbons						
Benzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Toluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
m/p-xylene	µg/L	1	<1	<1	<1	<1
o-xylene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Polycyclic VOCs						
Naphthalene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Surrogates Dibromofluoromethane (Surrogate)	%	-	115	123	101	117
d4-1,2-dichloroethane (Surrogate)	%	-	113	118	111	109
d8-toluene (Surrogate)	%	-	90	110	102	104
Bromofluorobenzene (Surrogate)	%	-	94	96	82	84
Totals						
Total Xylenes	µg/L	1.5	<1.5	<1.5	<1.5	<1.5
Total BTEX	µg/L	3	<3	<3	<3	<3
Volatile Petroleum Hydrocarbons in Water Method: AN433	Tested: 31/5/	2018				
TRH C6-C10	µg/L	50	<50	<50	<50	<50
TRH C6-C9	µg/L	40	<40	<40	<40	<40
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	115	123	101	117
d4-1,2-dichloroethane (Surrogate)	%	-	113	118	111	109
d8-toluene (Surrogate)	%	-	90	110	102	104
Bromofluorobenzene (Surrogate)	%	-	94	96	82	84
VPH F Bands						
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	<50	<50

	Sa	nple Number ample Matrix Sample Date ample Name	SE179733.001 Water 28 May 2018 BH2	SE179733.002 Water 28 May 2018 BH1(D)	SE179733.003 Water 28 May 2018 BH3(D)	SE179733.004 Water 28 May 2018 BH4(D)
Parameter	Units	LOR				
TRH (Total Recoverable Hydrocarbons) in Water Method: AN40	3 Tested:	1/6/2018				
TRH C10-C14	µg/L	50	<50	<50	<50	<50
TRH C15-C28	μg/L	200	<200	<200	<200	<200
TRH C29-C36	µg/L	200	<200	<200	<200	<200
TRH C37-C40	µg/L	200	<200	<200	<200	<200
TRH C10-C36	µg/L	450	<450	<450	<450	<450
TRH C10-C40	µg/L	650	<650	<650	<650	<650
TRH F Bands						
TRH >C10-C16	µg/L	60	<60	<60	<60	<60
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	<60	<60	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500	<500	<500
TRH >C34-C40 (F4)	μg/L	500	<500	<500	<500	<500
PAH (Polynuclear Aromatic Hydrocarbons) in Water Method: A	N420 Test	ed: 1/6/201	8			
Naphthalene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene Benzo(k)fluoranthene	μg/L μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Total PAH (18)	µg/L	1	<1	<1	<1	<1
Surrogates						
d5-nitrobenzene (Surrogate)	%	_	48	64	52	52
2-fluorobiphenyl (Surrogate)	%	-	58	78	58	72
d14-p-terphenyl (Surrogate)	%	-	68	86	60	86
OC Pesticides in Water Method: AN420 Tested: 1/6/2018		1 1			I	
Hexachlorobenzene (HCB)	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Gamma Chlordane	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane			~U.1	1.0~	-v.i	
Alpha Chlordane trans-Nonachlor	µg/L		<0 1	<0.1	<0.1	<0.1
trans-Nonachlor	μg/L μg/L	0.1	<0.1	<0.1	<0.1	<0.1
-	μg/L μg/L μg/L		<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1
trans-Nonachlor p.p'-DDE	μg/L μg/L μg/L μg/L	0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor p,p'-DDE Dieldrin	μg/L μg/L μg/L	0.1 0.1 0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
trans-Nonachlor p.p'-DDE Dieldrin Endrin	μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1
trans-Nonachlor p,p'-DDE Dieldrin Endrin o,p'-DDD	μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1

Parameter Units LOR OC Pesticides in Water Method: AN420 Tested: 1/6/2018 (continued) pp'-DDT µg/L 0.1				s	mple Number ample Matrix Sample Date	SE179733.001 Water 28 May 2018	SE179733.002 Water 28 May 2018	SE179733.003 Water 28 May 2018	SE179733.0 Water 28 May 20 [.]
OC Pesticides in Water Method: AN420 Tested: 1/6/2018 (continued) p.p-DDT µg/L 0.1 <0.1 <0.1 Endosulfan sulphate µg/L 0.1 <0.1 <0.1 Endosulfan sulphate µg/L 0.1 <0.1 <0.1 Endin aldehyde µg/L 0.1 <0.1 <0.1 Methoxythin µg/L 0.1 <0.1 <0.1 Stordin µg/L 0.1 <0.1 <0.1 Metoxythin µg/L 0.1 <0.1 <0.1 Stordin µg/L 0.1 <0.1 <0.1 Mirex µg/L 0.1 <0.1 <0.1 Storogates Dichervors µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5				ŝ	Sample Name	BH2	BH1(D)	BH3(D)	BH4(D)
OC Pesticides in Water Method: AN420 Tested: 1/6/2018 (continued) p.p-DDT µg/L 0.1 <0.1 <0.1 Endosulfan sulphate µg/L 0.1 <0.1 <0.1 Endosulfan sulphate µg/L 0.1 <0.1 <0.1 Endin aldehyde µg/L 0.1 <0.1 <0.1 Methoxythin µg/L 0.1 <0.1 <0.1 Stordin µg/L 0.1 <0.1 <0.1 Metoxythin µg/L 0.1 <0.1 <0.1 Stordin µg/L 0.1 <0.1 <0.1 Mirex µg/L 0.1 <0.1 <0.1 Storogates Dichervors µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Parameter			Units	LOR				
Endosulfan sulphate μg/L 0.1 <0.1		nod: AN420	Tested: 1/6/2018						
Endin aldehyde µg/L 0.1 <0.1 <0.1 Methoxychlor µg/L 0.1 <0.1	,p'-DDT			µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Nethoxychlor µg/L 0.1 <0.1 <0.1 Endrin ketone µg/L 0.1 <0.1	ndosulfan sulphate			µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Induction Ingl 0.1 <0.1 <0.1 isodrin µg/L 0.1 <0.1	ndrin aldehyde			µg/L	0.1	<0.1	<0.1	<0.1	<0.1
ingl 0.1 <0.1 <0.1 Wirex μg/L 0.1 <0.1	fethoxychlor			µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Mirex µg/L 0.1 <0.1 Surogates Surogates Surogates 9% - 90 CP Pesticides in Water Method: AN420 Tested: 1/6/2018 90 Dichlorvos µg/L 0.5 <0.5	ndrin ketone			µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Surrogates Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) % - 90 OP Pesticides in Water Method: AN420 Tested: 1/6/2018 Oinehoate µg/L 0.5 <0.5 Dinehoate µg/L 0.5 <0.5 Dinehoate µg/L 0.5 <0.5 Dinehoate µg/L 0.5 <0.5 Dinehoate µg/L 0.5 <0.5 Diation (Dimplate) µg/L 0.2 <0.2 Valuation µg/L 0.2 <0.2 <0.2 Valuation µg/L 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.	sodrin			µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Fetrachloro-m-xylene (TCMX) (Surrogate) % - 90 CP Pesticides in Water Method: AN420 Tested: 1/6/2018 Dichlorvos µg/L 0.5 <0.5	lirex			µg/L	0.1	<0.1	<0.1	<0.1	<0.1
DP Pesticides in Water Method: AN420 Tested: 1/6/2018 Dichlorvos µg/L 0.5 <0.5	Surrogates								
OP Pesticides in Water Method: AN420 Tested: 1/6/2018 Dichlorvos µg/L 0.5 <0.5	etrachloro-m-xylene (TCMX) (Surrogate)			%	_	90	107	98	105
Indiana Indiana <thindiana< th=""> <th< th=""><th></th><th></th><th></th><th>µg/L</th><th>0.5</th><th><0.5</th><th><0.5</th><th><0.5</th><th><0.5</th></th<></thindiana<>				µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Indiana Indiana <thindiana< th=""> <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td><0.5</td><td><0.5</td><td><0.5</td></th<></thindiana<>							<0.5	<0.5	<0.5
Total Total Total Uppl 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <							<0.5	<0.5	<0.5
Adalathion µg/L 0.2 <0.2							<0.2	<0.2	<0.2
Chorpyrifos (Chlorpyrifos Ethyl) µg/L 0.2 <0.2							<0.2	<0.2	<0.2
Parathion ethyl (Parathion) µµ/L 0.2 <0.2							<0.2	<0.2	<0.2
Arromophos Ethyl µg/L 0.2 <0.2							<0.2	<0.2	<0.2
Methidathion µg/L 0.5 <0.5 Ethion µg/L 0.2 <0.2							<0.2	<0.2	<0.2
Ethion µg/L 0.2 <0.2 Azinphos-methyl 0.2 <0.2							<0.5	<0.5	<0.5
Note Note Azinphos-methyl 0.2 <0.2							<0.2	<0.2	<0.2
Sector % - 58 114-p-terphenyl (Surrogate) % - 68 Fotal Phenolics in Water Method: AN289 Tested: 1/6/2018					0.2	<0.2	<0.2	<0.2	<0.2
Interpreterphenyl (Surrogate) % - 68 Total Phenolics in Water Method: AN289 Tested: 1/6/2018 Total Phenols Total Phenols mg/L 0.01	Surrogates					1			
Total Phenolics in Water Method: AN289 Tested: 1/6/2018 Total Phenols mg/L 0.01 <0.01	-fluorobiphenyl (Surrogate)			%	-	58	78	58	72
Fotal Phenols mg/L 0.01 <0.01	14-p-terphenyl (Surrogate)			%	-	68	86	60	86
	otal Phenolics in Water Me	thod: AN289	Tested: 1/6/2018			I		I	
	otal Phenols			mg/L	0.01	<0.01	<0.01	<0.01	<0.01
Artification and a second se	oH in water Method: AN101	Tested: 30/	5/2018		· I	1	1		
)H** No unit - 6.1							6.0	6.3	6.7

	S	mple Number sample Matrix Sample Date Sample Name	SE179733.001 Water 28 May 2018 BH2	SE179733.002 Water 28 May 2018 BH1(D)	SE179733.003 Water 28 May 2018 BH3(D)	SE179733.004 Water 28 May 2018 BH4(D)
Parameter	Units	LOR				
Conductivity and TDS by Calculation - Water Method: AN106	Tested: 30	/5/2018				
Conductivity @ 25 C	µS/cm	2	470	100	180	220
	sted: 31/5/20	018				
Chloride	mg/L	1	69	11	13	4.7
Sulfate, SO4	mg/L	1	<1.0	9.1	6.6	4.5
Fluoride	mg/L	0.1	<0.10	<0.10	0.16	0.25
Nitrate Nitrogen, NO3-N	mg/L	0.005	16	0.077	0.067	0.020
Alkalinity Method: AN135 Tested: 30/5/2018						
Total Alkalinity as CaCO3	mg/L	5	57	24	74	110
Total Dissolved Solids (TDS) in water Method: AN113 Tester Total Dissolved Solids Dried at 175-185°C	d: 31/5/2018 mg/L	10	310	89	150	150
Forms of Carbon Method: AN190 Tested: 31/5/2018						
Total Organic Carbon as NPOC	mg/L	0.2	1.7	0.6	0.6	0.5
Nitrite in Water Method: AN277 Tested: 30/5/2018						

SE179733 R0

	s	nple Number ample Matrix Sample Date cample Name	SE179733.001 Water 28 May 2018 BH2	SE179733.002 Water 28 May 2018 BH1(D)	SE179733.003 Water 28 May 2018 BH3(D)	SE179733.00 Water 28 May 2018 BH4(D)
Parameter	Units	LOR				
Total Phosphorus by Kjeldahl Digestion DA in Water Met	hod: AN279/AN29	3(Sydney on	ly) Tested: 31/	5/2018		
Total Phosphorus (Kjeldahl Digestion)	mg/L	0.02	1.5	<0.02	0.08	0.26
Ammonia Nitrogen by Discrete Analyser (Aquakem) Metl	hod: AN291 Tes	ted: 30/5/201	8			
Ammonia Nitrogen, NH ₃ as N	mg/L	0.01	0.07	0.01	<0.01	0.02
Metals in Water (Dissolved) by ICPOES Method: AN320 Calcium, Ca	Tested: 1/6/201	0.2	3.0	2.8	4.8	13
Magnesium, Mg	mg/L	0.1	40	4.0	13	14
Potassium, K	mg/L	0.1	0.5	2.9	1.5	1.4
Sodium, Na	mg/L	0.5	18	10	15	13
Trace Metals (Dissolved) in Water by ICPMS Method: AN	318 Tested: 31/5	5/2018			·	
Aluminium, Al	μg/L	5	<5	<5	<5	<5
Arsenic, As	μg/L	1	<1	<1	<1	15
Barium, Ba	μg/L	1	420	170	68	22
Cadmium, Cd	μg/L	0.1	0.2	<0.1	<0.1	<0.1
Chromium, Cr	μg/L	1	<1	<1	<1	<1
Cobalt, Co	μg/L	1	2	2	<1	<1
Copper, Cu	μg/L	1	1	<1	<1	<1
Iron, Fe	μg/L	5	<5	6	6	3400
	µg/L	1	<1	<1	<1	<1
Lead, Pb					-	
Lead, Pb Manganese, Mn	μg/L	1	100	23	3	560

Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 4/6/2018

Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001

Sample Number SE179733.005

		Sample Matrix Sample Date Sample Name		
Parameter	Units	LOR		
VOCs in Water Method: AN433 Tested: 31/5/2018 Monocyclic Aromatic Hydrocarbons				
Benzene	µg/L	0.5	<0.5	
Toluene	µg/L	0.5	<0.5	
Ethylbenzene	µg/L	0.5	<0.5	
m/p-xylene	µg/L	1	<1	
o-xylene	µg/L	0.5	<0.5	

Polycyclic VOCs

Naphthalene	µg/L	0.5	<0.5

Surrogates

Dibromofluoromethane (Surrogate)	%	-	100
d4-1,2-dichloroethane (Surrogate)	%	-	112
d8-toluene (Surrogate)	%	-	96
Bromofluorobenzene (Surrogate)	%	-	85

Totals

Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3

Volatile Petroleum Hydrocarbons in Water Method: AN433 Tested: 31/5/2018

TRH C6-C10	μg/L	50	<50
TRH C6-C9	µg/L	40	<40

Surrogates

Dibromofluoromethane (Surrogate)	%	-	100
d4-1,2-dichloroethane (Surrogate)	%	-	112
d8-toluene (Surrogate)	%	-	96
Bromofluorobenzene (Surrogate)	%	-	85

		SE179733.005 Water 28 May 2018 BH6(D)		
Parameter		Units	LOR	
Volatile Petroleum Hydrocarbons in Water VPH F Bands	Method: AN433	Tested: 31/5/2	018 (cont	inued)
Benzene (F0)		µg/L	0.5	<0.5
TRH C6-C10 minus BTEX (F1)		µg/L	50	<50

TRH (Total Recoverable Hydrocarbons) in Water Method: AN403 Tested: 1/6/2018

TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH C10-C36	µg/L	450	<450
TRH C10-C40	µg/L	650	<650

TRH F Bands

TRH >C10-C16	µg/L	60	<60
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500

PAH (Polynuclear Aromatic Hydrocarbons) in Water Method: AN420 Tested: 1/6/2018

Naphthalene	µg/L	0.1	<0.1
2-methylnaphthalene	µg/L	0.1	<0.1
1-methylnaphthalene	µg/L	0.1	<0.1
Acenaphthylene	µg/L	0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1
Fluorene	µg/L	0.1	<0.1
Phenanthrene	µg/L	0.1	<0.1
Anthracene	µg/L	0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1
Pyrene	µg/L	0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1
Chrysene	µg/L	0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1
Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1
Total PAH (18)	µg/L	1	<1

		Imple Numbe Sample Matri Sample Dat Sample Nam	x Water e 28 May 2018
Parameter	Units	LOR	
PAH (Polynuclear Aromatic Hydrocarbons) in Water	Method: AN420 Tes	sted: 1/6/20	018 (continued)
Surrogates			
d5-nitrobenzene (Surrogate)	%	-	50
2-fluorobiphenyl (Surrogate)	%	-	56
d14-p-terphenyl (Surrogate)	%	-	56

OC Pesticides in Water Method: AN420 Tested: 1/6/2018

Hexachlorobenzene (HCB)	µg/L	0.1	<0.1
Alpha BHC	µg/L	0.1	<0.1
Lindane (gamma BHC)	µg/L	0.1	<0.1
Heptachlor	µg/L	0.1	<0.1
Aldrin	µg/L	0.1	<0.1
Beta BHC	µg/L	0.1	<0.1
Delta BHC	µg/L	0.1	<0.1
Heptachlor epoxide	μg/L	0.1	<0.1
o,p'-DDE	µg/L	0.1	<0.1
Alpha Endosulfan	µg/L	0.1	<0.1
Gamma Chlordane	µg/L	0.1	<0.1
Alpha Chlordane	μg/L	0.1	<0.1
trans-Nonachlor	μg/L	0.1	<0.1
p,p'-DDE	µg/L	0.1	<0.1
Dieldrin	µg/L	0.1	<0.1
Endrin	µg/L	0.1	<0.1
o,p'-DDD	μg/L	0.1	<0.1
o,p'-DDT	μg/L	0.1	<0.1
Beta Endosulfan	µg/L	0.1	<0.1
p,p'-DDD	µg/L	0.1	<0.1
p,p'-DDT	µg/L	0.1	<0.1
Endosulfan sulphate	μg/L	0.1	<0.1
Endrin aldehyde	µg/L	0.1	<0.1
Methoxychlor	µg/L	0.1	<0.1
Endrin ketone	µg/L	0.1	<0.1
Isodrin	µg/L	0.1	<0.1
Mirex	μg/L	0.1	<0.1

	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	100
--	---	---	---	-----

Sample Number SE179733.005

	Sample Matri Sample Dat Sample Nam		
Parameter	Units	LOR	
OP Pesticides in Water Method: AN420 Tested: 1/6/2018			
Dichlorvos	µg/L	0.5	<0.5
Dimethoate	µg/L	0.5	<0.5
Diazinon (Dimpylate)	µg/L	0.5	<0.5
Fenitrothion	µg/L	0.2	<0.2
Malathion	µg/L	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	µg/L	0.2	<0.2
Parathion-ethyl (Parathion)	µg/L	0.2	<0.2
Bromophos Ethyl	µg/L	0.2	<0.2
Methidathion	µg/L	0.5	<0.5
Ethion	µg/L	0.2	<0.2
Azinphos-methyl	µg/L	0.2	<0.2
Surrogates			
2-fluorobiphenyl (Surrogate)	%	-	56
d14-p-terphenyl (Surrogate)	%	-	56
Total Phenolics in Water Method: AN289 Tested: 1/6/2018	1		
Total Phenols	mg/L	0.01	<0.01
pH in water Method: AN101 Tested: 30/5/2018			
pH**	No unit	-	6.9
Conductivity and TDS by Calculation - Water Method: AN106	Tested: 30	/5/2018	
Conductivity @ 25 C	µS/cm	2	220

Sample t Sample Sampl Sampl Sampl			SE179733.005 Water 28 May 2018 BH6(D)
Parameter	Units	LOR	
Anions by Ion Chromatography in Water Method: AN245 T	Tested: 31/5/20	18	
Chloride	mg/L	1	11
Sulfate, SO4	mg/L	1	3.3
Fluoride	mg/L	0.1	0.11
Nitrate Nitrogen, NO3-N	mg/L	0.005	0.087
Alkalinity Method: AN135 Tested: 30/5/2018			
	1		
Total Alkalinity as CaCO3	mg/L	5	99
	mg/L red: 31/5/2018 mg/L	5	99 140
Total Dissolved Solids (TDS) in water Method: AN113 Test	ed: 31/5/2018		
Total Dissolved Solids (TDS) in water Method: AN113 Test Total Dissolved Solids Dried at 175-185°C	ed: 31/5/2018		
Total Dissolved Solids (TDS) in water Method: AN113 Test Total Dissolved Solids Dried at 175-185°C Forms of Carbon Method: AN190 Tested: 31/5/2018	ed: 31/5/2018	10	140
Total Dissolved Solids (TDS) in water Method: AN113 Test Total Dissolved Solids Dried at 175-185°C Forms of Carbon Method: AN190 Tested: 31/5/2018 Total Organic Carbon as NPOC	ed: 31/5/2018	10	140
Total Dissolved Solids (TDS) in water Method: AN113 Test Total Dissolved Solids Dried at 175-185°C Forms of Carbon Method: AN190 Tested: 31/5/2018 Total Organic Carbon as NPOC Nitrite in Water Method: AN277 Tested: 30/5/2018	mg/L	0.005	140 1.2 <0.005

		Sa	ple Numbe mple Matri Sample Dat ample Nam	ix Water te 28 May 2018
Parameter		Units	LOR	
Ammonia Nitrogen by Discrete Analyser (Aquakem)	Method: /	AN291 Test	ed: 30/5/2	2018
Ammonia Nitrogen, NH ₃ as N		mg/L	0.01	0.02

Metals in Water (Dissolved) by ICPOES Method: AN320 Tested: 1/6/2018

Calcium, Ca	mg/L	0.2	5.1
Magnesium, Mg	mg/L	0.1	19
Potassium, K	mg/L	0.1	2.6
Sodium, Na	mg/L	0.5	12

Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Tested: 31/5/2018

Aluminium, Al	µg/L	5	<5
Arsenic, As	µg/L	1	9
Barium, Ba	µg/L	1	12
Cadmium, Cd	µg/L	0.1	<0.1
Chromium, Cr	µg/L	1	<1
Cobalt, Co	µg/L	1	1
Copper, Cu	µg/L	1	<1
Iron, Fe	µg/L	5	2300
Lead, Pb	µg/L	1	<1
Manganese, Mn	µg/L	1	620
Zinc, Zn	µg/L	5	6

Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 4/6/2018

Mercury mg/L 0.0001 <0.0001

MB blank results are compared to the Limit of Reporting

LCS and MS pike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Alkalinity Method: ME-(AU)-[ENV]AN135

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Total Alkalinity as CaCO3	LB148977	mg/L	5	<5	2%	107%

Ammonia Nitrogen by Discrete Analyser (Aquakem) Method: ME-(AU)-[ENV]AN291

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Ammonia Nitrogen, NH ₃ as N	LB148975	mg/L	0.01	<0.01	14%	99%

Anions by Ion Chromatography in Water Method: ME-(AU)-[ENV]AN245

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Chloride	LB149015	mg/L	1	<0.05	0 - 2%	92%
Sulfate, SO4	LB149015	mg/L	1	<1.0	1%	91%
Fluoride	LB149015	mg/L	0.1	<0.10	5%	99%
Nitrate Nitrogen, NO3-N	LB149015	mg/L	0.005	<0.005	4%	89%

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Conductivity @ 25 C	LB148976	µS/cm	2	<2	1%	98%

Forms of Carbon Method: ME-(AU)-[ENV]AN190

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Total Organic Carbon as NPOC	LB149045	mg/L	0.2	<0.2	4%	91%	95%

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Mercury	LB149248	mg/L	0.0001	<0.0001	0 - 26%	84%	85%

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Calcium, Ca	LB149136	mg/L	0.2	<0.2	0%	104%
Magnesium, Mg	LB149136	mg/L	0.1	<0.1	1%	100%
Potassium, K	LB149136	mg/L	0.1	<0.1		102%
Sodium, Na	LB149136	mg/L	0.5	<0.5		114%

Nitrite in Water Method: ME-(AU)-[ENV]AN277

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Nitrite Nitrogen, NO2 as N	LB148975	mg/L	0.005	<0.005	3%	96%

OC Pesticides in Water Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Hexachlorobenzene (HCB)	LB149129	µg/L	0.1	<0.1	0%	NA
Alpha BHC	LB149129	µg/L	0.1	<0.1	0%	NA
Lindane (gamma BHC)	LB149129	µg/L	0.1	<0.1	0%	NA
Heptachlor	LB149129	µg/L	0.1	<0.1	0%	77%
Aldrin	LB149129	µg/L	0.1	<0.1	0%	78%
Beta BHC	LB149129	µg/L	0.1	<0.1	0%	NA
Delta BHC	LB149129	µg/L	0.1	<0.1	0%	75%
Heptachlor epoxide	LB149129	µg/L	0.1	<0.1	0%	NA
o,p'-DDE	LB149129	µg/L	0.1	<0.1	0%	NA
Alpha Endosulfan	LB149129	µg/L	0.1	<0.1	0%	NA
Gamma Chlordane	LB149129	µg/L	0.1	<0.1	0%	NA
Alpha Chlordane	LB149129	µg/L	0.1	<0.1	0%	NA
trans-Nonachlor	LB149129	µg/L	0.1	<0.1	0%	NA
p,p'-DDE	LB149129	µg/L	0.1	<0.1	0%	NA
Dieldrin	LB149129	µg/L	0.1	<0.1	0%	82%
Endrin	LB149129	µg/L	0.1	<0.1	0%	116%
o,p'-DDD	LB149129	µg/L	0.1	<0.1	0%	NA
o,p'-DDT	LB149129	µg/L	0.1	<0.1	0%	NA
Beta Endosulfan	LB149129	µg/L	0.1	<0.1	0%	NA
p,p'-DDD	LB149129	µg/L	0.1	<0.1	0%	NA
p,p'-DDT	LB149129	µg/L	0.1	<0.1	0%	78%
Endosulfan sulphate	LB149129	µg/L	0.1	<0.1	0%	NA
Endrin aldehyde	LB149129	µg/L	0.1	<0.1	0%	NA
Methoxychlor	LB149129	µg/L	0.1	<0.1	0%	NA
Endrin ketone	LB149129	µg/L	0.1	<0.1	0%	NA
Isodrin	LB149129	µg/L	0.1	<0.1	0%	NA
Mirex	LB149129	µg/L	0.1	<0.1	0%	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	LB149129	%	-	80%	1%	85%

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

OP Pesticides in Water Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Dichlorvos	LB149129	µg/L	0.5	<0.5	0%	103%
Dimethoate	LB149129	µg/L	0.5	<0.5	0%	NA
Diazinon (Dimpylate)	LB149129	µg/L	0.5	<0.5	0%	99%
Fenitrothion	LB149129	µg/L	0.2	<0.2	0%	NA
Malathion	LB149129	µg/L	0.2	<0.2	0%	NA
Chlorpyrifos (Chlorpyrifos Ethyl)	LB149129	µg/L	0.2	<0.2	0%	91%
Parathion-ethyl (Parathion)	LB149129	µg/L	0.2	<0.2	0%	NA
Bromophos Ethyl	LB149129	µg/L	0.2	<0.2	0%	NA
Methidathion	LB149129	µg/L	0.5	<0.5	0%	NA
Ethion	LB149129	µg/L	0.2	<0.2	0%	86%
Azinphos-methyl	LB149129	µg/L	0.2	<0.2	0%	NA

Surrogates						
Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
2-fluorobiphenyl (Surrogate)	LB149129	%	-	82%	12%	76%
d14-p-terphenyl (Surrogate)	LB149129	%	-	98%	8%	88%

PAH (Polynuclear Aromatic Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN420

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Naphthalene	LB149129	µg/L	0.1	<0.1	0%	71%	74%
2-methylnaphthalene	LB149129	µg/L	0.1	<0.1	0%	NA	NA
1-methylnaphthalene	LB149129	µg/L	0.1	<0.1	0%	NA	NA
Acenaphthylene	LB149129	µg/L	0.1	<0.1	0%	75%	82%
Acenaphthene	LB149129	µg/L	0.1	<0.1	0%	72%	83%
Fluorene	LB149129	µg/L	0.1	<0.1	0%	NA	NA
Phenanthrene	LB149129	µg/L	0.1	<0.1	0%	82%	94%
Anthracene	LB149129	µg/L	0.1	<0.1	0%	73%	91%
Fluoranthene	LB149129	µg/L	0.1	<0.1	0%	85%	95%
Pyrene	LB149129	µg/L	0.1	<0.1	0%	82%	105%
Benzo(a)anthracene	LB149129	µg/L	0.1	<0.1	0%	NA	NA
Chrysene	LB149129	µg/L	0.1	<0.1	0%	NA	NA
Benzo(b&j)fluoranthene	LB149129	µg/L	0.1	<0.1	0%	NA	NA
Benzo(k)fluoranthene	LB149129	µg/L	0.1	<0.1	0%	NA	NA
Benzo(a)pyrene	LB149129	µg/L	0.1	<0.1	0%	94%	113%
Indeno(1,2,3-cd)pyrene	LB149129	µg/L	0.1	<0.1	0%	NA	NA
Dibenzo(ah)anthracene	LB149129	µg/L	0.1	<0.1	0%	NA	NA
Benzo(ghi)perylene	LB149129	µg/L	0.1	<0.1	0%	NA	NA
Total PAH (18)	LB149129	µg/L	1	<1			

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
d5-nitrobenzene (Surrogate)	LB149129	%	-	68%	13 - 20%	68%	54%
2-fluorobiphenyl (Surrogate)	LB149129	%	-	82%	12 - 21%	76%	58%
d14-p-terphenyl (Surrogate)	LB149129	%	-	98%	8 - 13%	88%	78%

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

pH in water Method: ME-(AU)-[ENV]AN101

Parameter	QC	Units	LOR	DUP %RPD	LCS
	Reference				%Recovery
pH**	LB148976	No unit	-	1%	100%

Total Dissolved Solids (TDS) in water Method: ME-(AU)-[ENV]AN113

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Dissolved Solids Dried at 175-185°C	LB149091	mg/L	10	<10	1 - 7%	88%

Total Phenolics in Water Method: ME-(AU)-[ENV]AN289

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Total Phenols	LB149111	mg/L	0.01	<0.01	0%	100%	96%

Total Phosphorus by Kjeldahl Digestion DA in Water Method: ME-(AU)-[ENV]AN279/AN293(Sydney only)

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Phosphorus (Kjeldahl Digestion)	LB149029	mg/L	0.02	<0.02	6%	106 - 107%

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Aluminium, Al	LB149005	µg/L	5	<5	0 - 8%	107%	102%
Arsenic, As	LB149005	µg/L	1	<1	0 - 1%	105%	109%
Barium, Ba	LB149005	µg/L	1	<1	1%	119%	100%
Cadmium, Cd	LB149005	µg/L	0.1	<0.1	0%	108%	107%
Chromium, Cr	LB149005	µg/L	1	<1	0%	111%	105%
Cobalt, Co	LB149005	µg/L	1	<1	0 - 1%	111%	102%
Copper, Cu	LB149005	µg/L	1	<1	0%	107%	98%
Iron, Fe	LB149005	µg/L	5	<5	1 - 3%	114%	109%
Lead, Pb	LB149005	µg/L	1	<1	0%	114%	106%
Manganese, Mn	LB149005	µg/L	1	<1	0 - 1%	107%	101%
Zinc, Zn	LB149005	µg/L	5	<5	0 - 13%	104%	72%

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
TRH C10-C14	LB149129	µg/L	50	<50	0 - 28%	80%
TRH C15-C28	LB149129	µg/L	200	<200	0%	86%
TRH C29-C36	LB149129	µg/L	200	<200	0%	93%
TRH C37-C40	LB149129	µg/L	200	<200	0%	NA
TRH C10-C36	LB149129	µg/L	450	<450	0%	NA
TRH C10-C40	LB149129	µg/L	650	<650	0%	NA

TRH F Bands

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
TRH >C10-C16	LB149129	µg/L	60	<60	0%	81%
TRH >C10-C16 - Naphthalene (F2)	LB149129	µg/L	60	<60	0%	NA
TRH >C16-C34 (F3)	LB149129	µg/L	500	<500	0%	94%
TRH >C34-C40 (F4)	LB149129	µg/L	500	<500	0%	95%

VOCs in Water Method: ME-(AU)-[ENV]AN433

Monocyclic Aromatic Hydrocarbons

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Benzene	LB149098	µg/L	0.5	<0.5	0%	113%	96%
Toluene	LB149098	µg/L	0.5	<0.5	0%	113%	123%
Ethylbenzene	LB149098	µg/L	0.5	<0.5	0%	113%	102%
m/p-xylene	LB149098	µg/L	1	<1	0%	113%	99%
o-xylene	LB149098	µg/L	0.5	<0.5	0%	113%	97%

Polycyclic VOCs

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Naphthalene	LB149098	µg/L	0.5	<0.5	0%	NA	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Dibromofluoromethane (Surrogate)	LB149098	%	-	106%	4%	89%	88%
d4-1,2-dichloroethane (Surrogate)	LB149098	%	-	106%	3%	92%	101%
d8-toluene (Surrogate)	LB149098	%	-	105%	0%	97%	107%
Bromofluorobenzene (Surrogate)	LB149098	%	-	86%	10%	106%	100%

Totals

Parameter	QC Reference	Units	LOR	MB
Total Xylenes	LB149098	µg/L	1.5	<1.5
Total BTEX	LB149098	µg/L	3	<3

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
TRH C6-C10	LB149098	µg/L	50	<50	0%	96%	75%
TRH C6-C9	LB149098	µg/L	40	<40	0%	91%	70%

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Dibromofluoromethane (Surrogate)	LB149098	%	-	106%	4%	89%	88%
d4-1,2-dichloroethane (Surrogate)	LB149098	%	-	106%	3%	92%	101%
d8-toluene (Surrogate)	LB149098	%	-	105%	0%	97%	107%
Bromofluorobenzene (Surrogate)	LB149098	%	-	86%	10%	106%	100%

VPH F Bands

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Benzene (F0)	LB149098	μg/L	0.5	<0.5	0%	NA	NA
TRH C6-C10 minus BTEX (F1)	LB149098	μg/L	50	<50	0%	94%	67%

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus
	reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as µmhos/cm or
	µS/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on
	the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA
	2510 B.
AN106	Salinity may be calculated in terms of NaCl from the sample conductivity. This assumes all soluble salts present, measured by the conductivity, are present as NaCl.
AN113	Total Dissolved Solids: A well-mixed filtered sample of known volume is evaporated to dryness at 180°C and the residue weighed. Approximate methods for correlating chemical analysis with dissolved solids are available.
	Reference APHA 2540 C.
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or
	recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN190	TOC and DOC in Water: A homogenised micro portion of sample is injected into a heated reaction chamber
	packed with an oxidative catalyst that converts organic carbon to carbon dioxide. The CO2 is measured using a non-dispersive infrared detector. The process is fully automated in a commercially available analyser. If required
	a sugar value can be calculated from the TOC result. Reference APHA 5310 B.
AN190	Chemical oxygen demand can be calculated/estimated based on the O2/C relation as 2.67*NPOC (TOC). This is an estimate only and the factor will vary with sample matrix so results should be interpreted with caution.
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion
	chromatographic system where the anions of interest ie Br, CI, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible
	absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B
AN277/WC250.312	Nitrite ions, when reacted with a reagent containing sulphanilamide and N-(1-naphthyl)-ethylenediamine dihydrochloride produce a highly coloured azo dye that is measured photometrically at 540nm.
AN279/AN293(Sydney)	The sample is digested with Sulphuric acid, K2SO4 and CuSO4. All forms of phosphorus are converted into
	orthophosphate. The digest is cooled and placed on the discrete analyser for colorimetric analysis.
AN289	Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH
	7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D.
AN291	Ammonia in solution reacts with hypochlorite ions from Sodium Dichloroisocyanuate, and salicylate in the presence
	of Sodium Nitroprusside to form indophenol blue and measured at 670 nm by Discrete Analyser.

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
Calculation	Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L. If TDS is >500mg/L free or total carbon dioxide cannot be reported . APHA4500CO2 D.

FOOTNOTES

IS Insufficient sample for analysis.

SG:

- LNR Sample listed, but not received.
- NATA accreditation does not cover the performance of this service.
- **
- Indicative data, theoretical holding time exceeded.
- LOR Limit of Reporting
- Raised or Lowered Limit of Reporting î↓
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
- The sample was not analysed for this analyte NVI
- Not Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bg) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - 37 MBq is equivalent to 1 mCi b.

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.